How Does Leisure Time Affect Production Efficiency? Evidence from China, Japan, and the US

# Xiang Wei, Hailin Qu & Emily Ma

#### **Social Indicators Research**

An International and Interdisciplinary Journal for Quality-of-Life Measurement

ISSN 0303-8300

Soc Indic Res DOI 10.1007/s11205-015-0962-1 VOLUME 122 No. 1 May 2015

# SOCIAL INDICATORS

ONLIN

FIRS

RESEARCH

AN INTERNATIONAL AND INTERDISCIPLINARY JOURNAL FOR QUALITY-OF-LIFE MEASUREMENT

Editor: Filomena Maggino

Springer



Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".





### How Does Leisure Time Affect Production Efficiency? Evidence from China, Japan, and the US

Xiang Wei<sup>1,5</sup> · Hailin Qu<sup>2,3</sup> · Emily Ma<sup>4</sup>

Accepted: 5 April 2015 © Springer Science+Business Media Dordrecht 2015

**Abstract** Labor efficiency is a central concept in economics. Although investigators have studied the influence of some variables (e.g., education time and physical capital) on labor efficiency, most studies overlook the impact of leisure time. This investigation examines the relationship between leisure time and labor efficiency in the world's three largest economies: China, the US and Japan. Results revealed a significant correlation between leisure time and labor efficiency heat that active leisure participation can improve productivity. The findings also demonstrate that, in contrast to the US and Japan, China, as a typical developing country, has seldom seen an apparent positive effect of leisure time on efficiency, which may partially explained by the type of leisure participation (active or passive).

Keywords Efficiency  $\cdot$  Leisure time  $\cdot$  Production  $\cdot$  Leisure participation  $\cdot$  Cross comparison

Emily Ma emily.ma@griffith.edu.au Xiang Wei

> weixiang@bisu.edu.cn Hailin Qu h.qu@okstate.edu

- <sup>1</sup> International Studies University, National School of Development, Peking University, Beijing, People's Republic of China
- <sup>2</sup> Regents Professor and William E. Davis Distinguished Chair, School of Hotel and Restaurant Administration, Oklahoma State University, Stillwater, OK 74078, USA
- <sup>3</sup> Business School, Sun Yat-Sen University, Guangzhou, People's Republic of China
- <sup>4</sup> Office 0.27, N72 Business 2, School of Tourism, Leisure, Hotel and Sport Management, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- <sup>5</sup> China Leisure Economy Research Centre, Beijing, People's Republic of China

#### 1 Introduction

Over the past 30 years, most countries in the Organization for Economic Co-operation and Development (OECD) have strongly emphasized attaining a higher standard of living, and increased leisure time has accompanied their enormous economic growth (Fogel 2000). These developments call for more research attention to the impact of leisure time on economic growth and efficiency. Unfortunately, however, most economic theories have overlooked the effect of leisure on efficiency. For example, concerning work–leisure choices, neoclassical economists consider that from the perspective of the elasticity of inter temporal substitution, leisure time and work time are perfect substitutes (Kydland and Prescott 1982; Mankiw et al. 1985; Ioannides and Taub 1992). As a result, many economic forecasts have been misleading, in that they took into account only the increase in leisure time and did not consider the differences in how leisure time was spent (Nordhaus and Tobin 1972; Fogel 2000). In general, economic theories put great emphasis on the aggregate goal of the economy but put less weight on the individual's standard of living, including, for example, leisure time (Ortigueira 2000; Kenc 2004; Georg 2008).

Fortunately, sociologists have documented the positive side of leisure. Investigators have suggested that individuals' happiness and efficiency would increase through various activities in leisure time as a result of improved self-esteem, self-awareness, and creativity (Csikszentmihalyi 1981; Hills and Argyle 1998; Galit 2007). As a result, some economists, enlightened by sociologists' insights regarding the benefits of leisure time, have studied the positive effects of leisure on economic development (Fogel 2000; Gómez 2009), and have found that leisure participation can improve labor efficiency through the accumulation of human capital (Fogel 2000; Lee 2001).

Integrating theories from both the sociology and economics disciplines would seem to offer a fruitful approach to better understanding the relationship between efficiency and leisure time. Leisure time, according to Robinson and Godbey (1997), include every moment that one is not at work. Leisure activities can generate ongoing, transforming development throughout adulthood and is intrinsically rewarding that increase extrinsic economic value (Beatty and Torbert 2003). Leisure time has been calculated based on the Theory of the Allocation of Time (Becker 1965). However, variations in the calculation methods of leisure times exist across different nations and regions (Table 1) due to differences in contexts. OECD countries normally calculate leisure time by deducting work and personal care time from total time available. While Gronau (1977) suggested that leisure time should be calculated by deducting work and home production time from the total time available, while home production time is relatively constant. Due to these variations and considering the focus of our study (three countries), to keep consistency, we calculated leisure time by deducting work time and school time from the total time available. This way of calculation has been known as focusing more on the quantity of time (Ramsay and Francis 2009).

The purpose of this study is to examine the positive effect of leisure on efficiency through an economic analysis from the sociological perspective. Specifically, we explored such effects by cross-comparing the economies of China, the US, and Japan, which are the three largest economies with different modes of development.

#### 2 Literature Review

Generally speaking, leisure participation affects the formation and accumulation of human capital (Ladrón-de-Guevara et al. 1999; Mullahy and Robert 2010). Human capital is about the quality of population and it refers to all useful skills and knowledge that individual

| How Does Leisure Time Affect Production Efficiency? Evidence | ÷ |
|--------------------------------------------------------------|---|
|--------------------------------------------------------------|---|

|                                         |               | -                                      |                                                                                                                                                                 |
|-----------------------------------------|---------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author(s) and<br>year of<br>publication | Region        | Sample size                            | Leisure calculated/defined                                                                                                                                      |
| Ryder et al. (1976)                     | US            | N.A.                                   | Leisure time = total time - work - training                                                                                                                     |
| Gronau (1977)                           | US            | 1281 individual                        | Leisure time = total time - work - home<br>production (relatively stable)                                                                                       |
| OECD (2009)                             | International | 25 countries of<br>the OECD in<br>2006 | Leisure Time = total time - work - personal care sleeping and eating)                                                                                           |
| Ramsay and<br>Francis (2009)            | US            | 105 years panel data                   | Leisure time = total time - work - school - home production                                                                                                     |
| Sevilla et al. (2012)                   | US            | 38 years panel data                    | Leisure is defined as "hours per week devoted to all<br>activities that we cannot pay somebody else to do<br>for us and that are not biological needs" (p. 942) |
| Aguiar and<br>Hurset (2007)             | US            | 38 years panel data                    | Leisure time = total time - work - non-market<br>production - child care                                                                                        |

Table 1 Variations in calculating leisure time

deliberate invest to improve their quality and competence (Schultz 1961). In addition to its known impacts in improving human capital, leisure also plays an important role in influencing people's perceived Quality of Life (Lloyd and Auld 2002). Many studies have documented the positive relationship between participating in leisure activities and improved Quality of Life (e.g. Baldwin and Tinsley 1988; Foong 1992; Cracolici et al. 2010). Improved Quality of Life would in turn affect economic growth in a positive manner (Ryder et al. 1976; Ortigueira 2000; Suri et al. 2011). In addition, leisure participation directly influences an individual's working efficiency through her/his work–leisure choice in the labor market (Maguire 2008; Podor and Halliday 2012). The following section reviews in detail the influence of leisure time on human capital, economic growth, and labor efficiency.

#### 2.1 Leisure Time and Human Capital

Most economists assume that human capital has no influence on the quality of leisure time, and that leisure participation has a negative impact on income (Hendee 1971; Buchanan 1994). For example, Ladrón-de-Guevara et al. (1999) structured a model in which human capital had no influence on the quality of leisure, but an individual's productivity would improve when the time spent on education increases. This improvement occurs because education can enhance individuals' competence, which is an important measure for human capital. Following this logic, individuals would need to reduce their amount of leisure time if they want to increase their income, because they would need to spend more time on education and work. This logic represents a typical paradigm in mainstream research in economics.

However, this view has obvious flaws. First of all, scholars have demonstrated that, in reality, human capital does affect the quality of leisure. For instance, Ortigueira (2000) used "qualified leisure"(QL)<sup>1</sup>in an endogenous economic growth model to indicate how leisure can positively influence economic growth. In addition, Harris (2012) found that

<sup>&</sup>lt;sup>1</sup> Qualified leisure refers to the leisure time that can be influenced by human capital (Ortigueira 2000).

scholarly activity in elite universities was strongly associated with the quality of leisure time and lifelong learning activities through tension relief. A positive correlation has been observed between education and sports, an important form of leisure activity, with highly educated people choosing to exercise more, according to a large-scale survey in Finland (Borodulin et al. 2008). Additionally, research showed that better-educated individuals are likely to allocate more time to physical activities than less-educated individuals (Mullahy and Robert 2010). In other words, different levels of human capital engage in different qualities of leisure participation.

Second, leisure participation has effects on the formation and accumulation of human capital. Although formal education strongly benefits improvement of human capital, the fact that leisure time and leisure activities contribute to enhance human capital should not be overlooked (Chen and Chevalier 2008). For example, exercise breaks at work can enhance a company's identity by increasing the quality of human capital of employees (Pichot and Pierre 2009). Additionally, an individual's competency and work performance can be improved through increased consumption of leisure, with "conspicuous leisure" having a positive effect on the quality of human capital (Weder 2004). Furthermore, an individual's work–leisure choice can influence the individual's health status (Neanidis 2012), and health is an important factor of human capital.

The above perspectives imply that work and leisure are to some extent complementary (Walsh 1982), and that leisure time and leisure activities may have positive effects on individuals' well-being, work performance, and human capital<sup>2</sup> (Walsh 1982; Lu and Argyle 1994; O'Boyle 2011). As individuals with higher hourly wages tend to work fewer hours, they acquire more leisure time. In return, more leisure enjoyment will lead to higher job satisfaction and happiness in life(Zhang and Thomas 2003).

#### 2.2 Leisure Time and Economic Growth

In the 1960s, many researchers began to analyze the relationship between economic growth and time spent in education (leisure time was defined as non-working hours, so education time was counted as a kind of leisure time) (Chase 1967; Ryder et al. 1976). Applying are presentative agent model, several investigators analyzed the effects of leisure time on economic growth (Lucas and Rapping 1969; Kydland and Prescott 1982; Mankiw et al. 1985; Ioannides and Taub 1992). However, the representative agent model analysis had deficiencies, which called for further research. First, the model hypothesized that for all consumers, leisure has a common implicit price (Rubinstein 1974; Eichenbaum et al. 1985), which is not the case in real life. Second, the usual assumption was that the same level of leisure would bring the same level of utility to consumers (Fujita 1989). However, utility disparities are the result of many factors, such as differences in personalities, educational levels, climates, and wage interactions. Third, a further assumption was that human capital does not affect the quality of leisure time (Ladrón-de-Guevara et al. 1999), but in reality human capital will always interact with the quality of leisure time (Pichot and Pierre 2009; Neanidis 2012).

To overcome the above shortcomings, researchers have developed several new theories and methodologies (Gómez 2009; Varvarigos 2011; Kačerauskas 2012). Notably, the real business cycle theory created a formal framework to deal with leisure time in an economy. The classic real business cycle model assumed that technological shock has a strong

<sup>&</sup>lt;sup>2</sup> Human capital refers to the stock of competencies, knowledge, creativity, social attributes, and personality that are embodied in the ability to produce economic value (Simkovic 2012).

negative effect on leisure time (Kydland 1995; Pintea 2010). In particular, technical progress can lead to the increase of leisure time in the short run, while aggregate production has a notable negative correlation with leisure time in the long run (Gali 1999). In particular, in an economy with overlapping generations, individuals' welfare finally declines as successive generations increase labor effort at the expense of leisure (Varvarigos 2011).

In sum, the literature in the traditional economics discipline reflects the view that leisure time is a "crash out" for working time and will decrease production in the long run. Following this logic, economic growth is explained by work-related activities only, such as production (Barro 1991; Jones 1995) and education (Romer 1986; Lucas 1988),while the positive role of leisure time is degraded. However, empirical studies have found a positive relationship between leisure participation and economic growth and efficiency (e.g., Beatty and Torbert 2003; Maguire 2008). For example, a study of 103 Italian provinces between 2001 and 2006 showed a positive effect of the provision of leisure amenities on regional economic growth (Piergiovanni et al. 2009). Other research also found a positive and statistically significant relationship between leisure from a different angle, Rau and Triemer (2004) studied the relationship between mood and working overtime in a sample of 117 women and 126 men who were assessed over 24 h using computerized diary and ambulant monitoring. This study found that working overtime with less leisure time significantly harmed people's ability to recover and lowered their work efficiency.

#### 2.3 Leisure Time and Efficiency

Research in psychology has shown that the psychological state of "flow" brings happiness to people (Csikszentmihalyi 1997). The flow experience usually occurs in leisure time(Harris 2012) or during leisure activities (Stebbins 2000). Hence, some leisure participation could improve happiness. For instance, Lyng (1990) found that free-fall parachute jumping—a highly risky leisure activity—can bring participators particular pleasures. Shilling (2004) also suggested that certain kinds of leisure participation could improve individuals' work efficiency and quality of life through the generation of happiness.

Additionally, leisure pursuits can serve as a compensation for work (Maguire 2008). Studies have suggested that leisure activities after work (Drive, Brown and Peterson 1991) or during work (Defrance and Pociello 1993) can enhance employees' job satisfaction and work performance (Ragheb 1993).

Finally, active participation in leisure activities such as community involvement and joining a sports club can enhance individual's social capital by expanding one's social network (Putnam 1995), thus further enhancing people's job performance (Maguire 2008). According to Bourdieu (1986), social capital is aggregate of actual or potential collectively owned resources that could link to benefits to individual members. Despite all the positive influence that leisure can have, the positive effects of leisure on work efficiency are under some constraints, as Ruiz-Contreras et al. (2012) found that neither diversity nor frequency of leisure activities affected working memory efficiency.<sup>3</sup>

The above literature review suggests a need to explore the relationships between leisure and efficiency. In undertaking this exploration, we first studied the labor efficiency

<sup>&</sup>lt;sup>3</sup> Working memory efficiency refers to the ability (i.e., speed, scale, and level) in brain metabolism responses. Please see the working memory assessment in Ruiz-Contreras et al. (2012, p. 92).

differences in different countries. We found that for the US and Japan, which have similarly sized economies, labor efficiency is about 30 times that of China, and the average annual leisure time of the US and Japan is about 700 h more than that of China (The World Bank 2012). These statistics raise two questions: Why does an efficiency gap exist among countries with similarly sized economies, and would the amount of leisure time offer an explanation? With these questions in mind, and drawing on theories from both economy and sociology, we propose a theoretical framework and test it using empirical data from the 4 countries.

#### **3** Theoretical Model

As leisure has positive effect on human capital, growth, and labor efficiency, we introduce leisure into a theoretical model to demonstrate such an effect and its results.

According to Lucas (1988), working time can be divided into time for producing consumer goods and time for producing human capital or education time. Correspondingly, leisure time is non-working time, which includes the time for rest and housework or the time for travel and entertainment.

Labor efficiency can be achieved by way of two avenues. The first avenue is through technical progress advanced during the working period. The second avenue lies in the possibility of the individual's self-fulfillment and self-realization through activities during leisure time, which are likely to have positive effects and potentially motivate productivity (Fogel 2000; Maguire 2008; Monte 2008; Palmer 2008; Sankey 2008). Therefore, to better understand the role of leisure in the development of human capital and efficiency, we include leisure time as an input in the production function in Lucas's framework, which is commonly applied to deal with human capital in economics.

Therefore, we specify the following production function

$$Y = \bar{A}K^{\beta}H^{1-\beta} \tag{1}$$

where Y denotes aggregate production,  $\overline{A}$  represents an exogenous technical level, K is aggregate capital,<sup>4</sup>  $\beta$  represents the elasticity of K to Y, and H denotes human capital. L denotes the averaged leisure time of a country.

When considering the process called "learning by doing" (Romer 1986) and the process about positive effect from leisure,  $\overline{A}$  could be functional as

$$\bar{A} = AK^{\alpha}l^{1-\alpha} \tag{2}$$

where A denotes an exogenous technology level, a is the elasticity of K to A, and (1 - a) is the elasticity of l to  $\overline{A}$ .

Normally, as human capital is determined by education time (Mankiw et al. 1992), human capital H is treated as follows:

$$H = uL \tag{3}$$

where u denotes education time (here, total time is normalized into 1) and L denotes aggregate labor force.

<sup>&</sup>lt;sup>4</sup> Throughout the paper, the capital letters denote total amount and the lower-case letters denote per-capita amount, unless otherwise specified.

Take Eqs. (2) and (3) into Eq. (1), and divide it by (1 - u - l) L, then process the natural logarithm. The determinant frame of labor efficiency with leisure will be decided as in Eq. (4).

$$\ln \hat{y} = c + (\alpha + \beta) \ln k + (1 - \beta) \ln u - \ln(1 - u - l)$$
(4)

where  $\hat{y}$  denotes GDP per capita per (working) hours, the measure of labor efficiency; k denotes physical capital per capita, u denotes education time per capital, which is the Proxy Variable of human capital, and c is the constant term including technical level and population level.

Equation (4) is a theoretical (economic) model showing that labor efficiency is determined by physical capital (k), human capital (u), and leisure time (l) in the form of natural logarithm. Equation (4) reveals that leisure time might have dual effects on efficiency. That is, leisure time may have both a positive or negative effect on efficiency. This is because leisure time has a known positive effect on human capital and working efficiency, as indicated above. On the other hand, leisure time has a negative effect on education time and working hours, thus would lead to a decline of production and pose a negative effect on efficiency.

In other words, labor efficiency is determined by factors such as capital, education time, and leisure. Nevertheless, our intent is to further explore the relative importance of these determinants, especially the role of leisure time. In the following section, we examine and compare the determinants of efficiency in three countries—China, the US, and Japan—to explore the effect of leisure time on labor efficiency.

#### 4 Methods

#### 4.1 Data Sources

For this study, we relied on secondary data mainly from the following sources, including the World Bank, the Organization for Economic Cooperation and Development Library (OECD), the United Nations Educational, Scientific and Cultural Organization (UNESCO), the National Bureau of Statistics of China and China's Ministry of Human Resources and Social Security. Details on specific sources used in model testing are provided in the following text.

This study used 31 years (1980–2011) of time series data of the three countries. GDP per capita is usually used to measure the level of economic development, and therefore reflects the richness of an economy (Solow 1957; Romer 1986;Lucas 1988; Aghion and Howitt 1992; Gómez 2009), but it cannot be used to gauge the efficiency of a country. Labor efficiency indicates the growth potential of a nation and relates to the concept of time.

In this paper, the measure of an explained variable and explanatory variables is as follows. First, the explained variable,  $(\hat{y})$  (GDP per capita per hour), is defined as per capita GDP divided by annual average working hours, where the data for GDP and gross population were obtained from the website of the World Bank (The World Bank 2014a). The website has database which contains key economic indicators, such as GDP, population and income level of 213 counties.

Second, per capita capital k is estimated by fixed capital formation per capita. In fact, constructing capital stock from investment data is a quite difficult and complicated task.

Here, we take no account of Capital Depreciation, and then it is suitable to construct capital stock by capital formation under Perpetual Inventory Method (Meinen et al. 1998; Bierens 1997a, b). The data of fixed capital formation is drawn from the website of the World Bank (The World Bank 2014b). The website also provided key economy and growth indicators such as GDP per capita, inflation and gross capital formation.

Third, education time u is gauged by average schooling hours of the population over 25 years divided by life expectancy of the same population group. Here the data for average hours of schooling are taken from the education databased provided by the Data Centre of the UNESCO website (2014) and the life expectancy data are taken from the World Bank website (The World Bank 2014c).

Fourth, as accurate data for leisure time are difficult to find, leisure time l is obtained by subtracting average working hours and education time from total hours of a year. The data of annual average working hours in the US and Japan are taken from the Organization for Economic Cooperation and Development Library (OECD 2014), where average annual hours actually worked of 38 countries (including US and Japan) are included. The data of annual average working hours in China is taken from the website of China's National Bureau of Statistics (2014) and Ministry of Human Resources and Social Security (2014).

Taking into account the impact of market exchange rate and price deflator, the production data of GDP is estimated using the Prices and Purchasing Parties (PPP) and the data of fixed capital formation is in the form of the constant 2005 US dollar. Here the production PPP GDP is gross domestic product converted to constant 2011 international dollars using purchasing power parity rates. All data and adjustment methods are based on World Development Indicators (The World Bank 2014d).

#### 4.2 Data Analysis

Equation (4) shows that labor efficiency was determined by not only capital factors (e.g., physical capital k and human capital h) but also time factors (e.g., education time u and leisure time l). The data analysis consisted of three stages. The first stage excluded extreme outliers. Then, as time series data, working hours, and leisure time were not recorded every year, especially in China, the second stage treated missing data using within-group mean method (Downey and King 1998; Walker 2009). In the third stage, the regression models [see Eq. (5)] at the level of three countries were estimated respectively.

The statistic estimation model in linear regression is as followed

$$\hat{y} = c + \alpha_1 k + \alpha_2 u + \alpha_3 l + \varepsilon \tag{5}$$

here, c is intercepted,  $\alpha_1 - \alpha_3$  denotes the estimated coefficients, and  $\varepsilon$  is the stochastic error based on the assumption of a white noise process.

This model assessed the relationship between labor efficiency and its determinants (physical capital k, education time u and leisure time l). Equation (5) is the econometric model derived from Eq. (4)—the theoretical (economic) model. The model was tested using data from 1980 to 2011 in a time series. Normally, time series data may introduce the problem of serial correlation, so we first applied the least squares method (OLS) to estimate the three models. If the problem of serial correlation occurred in OLS, two-stage least squares (TLS) and the Newey–West method (1987) were employed to estimate the models. If serial correlation still existed in regression residuals, we introduced first and/or second auto regression [AR(1), AR(2)] into the regression. Fair (1970) proved that auto regression could be added into the regression to improve TLS with the problem of serial correlation.

He further pointed out that the lagged explained variable and lagged explanatory variables must be included in the list of instrumental variables to obtain the consistent estimate.

#### 5 Results

The purpose of this study was to examine the determinants of labor efficiency and to determine, through transnational comparison, how leisure time would influence efficiency.

Table 2 reports the means and standard deviations for  $\hat{y}$ , k, u and l of three countries, using per-hour GDP per capita,  $\hat{y}$ , as a proxy of labor efficiency. Table 1 indicates that China had a much lower efficiency with the mean value of about 0.5 (dollar/h),which was 1/32 of Japan (M = 15.5702 dollars/h) and 1/34 of the US (M = 16.3799 dollars/h). It is surprising that China, as the world's largest economy, has such a low efficiency.

Table 2 also demonstrates the labor efficiency decided by three factors according to Eq. (5): physical capital (whose proxy variable is k), human capital (whose proxy variable is u), and social capital (whose proxy variable is l).

As for *l*, China's average leisure time is 5023.051 h, which is 2.63 %  $\left(=\frac{5155.578-5023.051}{5023.051}\right)$  less than that of the US and 5.58 %  $\left(=\frac{5303.374-5023.051}{5023.051}\right)$  less than that of Japan. These percentages mean that a Chinese worker has to work 132 and 280 h per year more than their American and Japanese counterparts respectively to reach the same level of production output. This gap will be expanded if we take the difference in leisure quality between China and the US into account, because Chinese people tend to engage in more passive leisure activities (Yin 2005). For example, 84 % of Mainland Chinese university students reported that their most frequent leisure activities were passive (Jackson and Walker 2006), a percentage little changed from that of the 1990s (Yu and Berryman 1996).

In other words, as Table 2 shows, the labor efficiency of the US was the highest among the three countries, followed by Japan. Of the three countries, China ranked last in terms of labor efficiency and also fell behind in leisure time.

Regression analysis helped structurally to figure out the reasons for these results. Three models (Model 1 for China, Model 2 for the US, and Model 3 for Japan) were regressed according to Eq. (5).

Unfortunately, the Durbin–Watson test revealed serial correlation in all OLS regression process for three models. Thus, the first-order autoregressive item [AR(1)] and the second-order autoregressive item [AR(2)] were added into the models to remove the serial correlation (Fair 1970) and problems of serial correlation were removed from Model 1 and Model 3. Here, lag truncation was equal to three and convergence was achieved after nine

**Table 2** Summary statistics for efficiency  $\hat{y}$ , physical capital k, education time u, and leisure time l in three countries (1980–2011)

| Variables    | China     |          | US        |           | Japan     |           |
|--------------|-----------|----------|-----------|-----------|-----------|-----------|
|              | Mean      | SD       | Mean      | SD        | Mean      | SD        |
| ŷ (dollar/h) | 0.4842    | 0.5710   | 16.3799   | 6.4313    | 15.5702   | 6.6069    |
| k (dollar)   | 465.9124  | 611.2212 | 5387.3647 | 1995.1623 | 7399.1039 | 2556.1761 |
| <i>u</i> (h) | 1175.6004 | 114.5482 | 1785.8284 | 57.7787   | 1538.6263 | 49.8029   |
| <i>l</i> (h) | 5023.051  | 162.3753 | 5155.578  | 55.79294  | 5303.374  | 96.86694  |

| China (Model 1)    |             |                 |            | US (Model 2) |                 |          | Japan (Model | 3)              |          |
|--------------------|-------------|-----------------|------------|--------------|-----------------|----------|--------------|-----------------|----------|
| Variables          | Coefficient | t statistic     | SE         | Coefficient  | t statistic     | SE       | Coefficient  | t statistic     | SE       |
| c(Intercept)       | -0.9230     | $-7.6004^{***}$ | 0.121449   | -550.6292    | $-3.1603^{***}$ | 174.2281 | -105.87      | $-5.0451^{***}$ | 20.9853  |
| k                  | 0.000       | $56.017^{***}$  | 1.63E - 05 | 0.001951     | $6.4860^{***}$  | 0.000301 | 0.0018       | 20.250***       | 9.14E-05 |
| п                  | 0.0001      | 2.0555**        | 8.24E - 05 | 0.108047     | 4.5045***       | 0.023986 | 0.0075       | 0.6567          | 0.0114   |
| 1                  | 0.0001      | $6.2487^{***}$  | 2.50E - 05 | 0.070537     | 2.6595***       | 0.026522 | 0.0174       | 4.6744***       | 0.0037   |
| AR(1)              | 0.6411      | $4.1961^{***}$  | 0.152803   | 0.717946     | $2.9903^{***}$  | 0.240085 | 1.9371       | 9.5348***       | 0.2031   |
| AR(2)              | -0.9564     | -5.2593 * * *   | 0.181850   | -0.114929    | -0.5142         | 0.223501 | -0.9065      | -4.9550 ***     | 0.1829   |
| Adjusted $R^2$     | 0.998312    |                 |            | 0.986665     |                 |          | 0.994598     |                 |          |
| S.E. of regression | 0.023805    |                 |            | 0.781247     |                 |          | 0.496978     |                 |          |
| Durbin-Watson      | 2.035233    |                 |            | 1.932895     |                 |          | 1.557973     |                 |          |
| F-statistic        | 3431.864    |                 |            | 358.5716     |                 |          | 883.6992     |                 |          |

 Table 3 Regression results of efficiency for four countries (1980–2011)

iterations for Model 1 and after 193 iterations for Model 3. To mitigate the serial correlation in Model 2, TLS with Newey–West Method was employed for the model (see Table 3).

Table 3 indicates the structural relationships among variables. First, the Ramsey test of statistics (Ramsey 1969) showed that the three models had a proper functional form as the F-test was passed (i.e., F = 3431.864 for Model 1; F = 358.5716 for Model 2; F = 883.6992 for Model 3). The estimations had high degrees of fit (adjusted  $R^2 = 0.998312$ , 0.986665, and 0.994598 respectively). Durbin–Watson test statistics (2.035233 for Model 1, 1.932895 for Model 2, and 1.557973 for Model 3) were acceptable,<sup>5</sup> and serial correlation was not a major problem for the three models.

We gradually added the autoregressive items to adjust the residual error of regression so as to minimize the Akaike information criterion and the Schwartz criterion as well as simultaneously controlling the residual error at an acceptable level. Additionally, the estimate coefficients of independent variables were relatively small because the range of values for the dependent variable was much less than that of the independent variables.

Second, for physical capital k, significant positive coefficients were at the level of p < .01 (China, t = 56.017; the US, t = 6.4860; Japan, t = 20.250). These results show that a higher level of physical capital, k, was significantly associated with a higher level of labor efficiency,  $\hat{y}$ .

Human capital *u* played a positive role in labor efficiency of China at the level of p < .05 (t = 2.0555). A higher u was significantly associated with a higher efficiency level for the US (t = 4.5045, p < .01). However, the effect of human capital on labor efficiency was not significant (t = 0.6567). As Table 3 shows, Japan's average hours of education 1538.6263 h, was much less 247 h than that of the US. As Japan, like the US, is a developed country, Japan's education time might be not adequately high or qualified to significantly contribute to its labor efficiency.

Third, the level of leisure time *l* contributes very slightly to labor efficiency for China (t = 6.2487, p < .01) as the coefficient of *l* is just 0.0001 which is surprisingly 0.14 %  $\left(=\frac{0.0001}{0.0705}\right)$  of the US and 0.57 %  $\left(=\frac{0.0001}{0.0174}\right)$  of Japan. The cases of the US and Japan demonstrated a different pattern in leisure effect: leisure time significantly contributes much more strongly to the efficiency than that of China (t = 2.6595, p < .01 for the US; t = 4.6744, p < .01 for Japan).

#### 6 Discussion

This investigation demonstrates the important role of leisure time in labor efficiency. Results of this study reveal that different economies have different average leisure time, which in turn has different effects on labor efficiency.

As a developing country, China has relatively less leisure time and leisure time has little effect on efficiency, whereas the US, as a developed country, has more leisure time and leisure time has a relatively stronger positive effect on labor efficiency. Japan falls in the middle of China and the US in terms of leisure time and its effect on efficiency.

Figures 1 and 2 demonstrate above description. As Fig. 1 shows, Chinese annual leisure time experienced a steady growth from 1980 to 2011 (especially from 1995 to 2001when the central government promoted the 5-workday week policy in 1999 and the Golden

<sup>&</sup>lt;sup>5</sup> Statistically, the problem of serial correlation could be ignored in the statistical experience if Durbin-Watson test statistics are significantly greater than 1.5 and less than 2.5 (Durbin and Watson 1971).

Week Holiday in 2000), but China's labor efficiency remained almost constant during the same period (see Fig. 2). These findings imply that an increase in leisure time did not contribute to China's labor efficiency. In contrast, a slight increase in leisure time of Japan brought a much stronger increase in its labor efficiency. Namely, Japan's labor efficiency saw a rapid growth as a result of a rapid increase in leisure time.

Why do different economies show different labor efficiencies in relation to leisure time? Generally, according to the theoretical model in this paper, labor efficiency is mainly determined by physical capital (k), human capital (u), and social capital (denoted by leisure time l), so it is natural for China to have much less labor efficiency than the US and Japan ask, u and l of China were all less than those of the US and Japan (see Table 2).

#### 6.1 Proof Analysis

What limited leisure time's contribution to labor efficient in China? Why Leisure time cannot contribute to labor efficiency as much as the US and Japan in China?

First, the passive leisure participation of Chinese people might be the main reason for the relationship between labor efficiency and leisure time. Passive leisure participation would lead to individual's low energy level and low productivity. For example, watching TV watching is considered as a typical type of passive leisure participation (Lu and Hu 2005) because people who watched a lot of TV experienced lower leisure satisfaction, less happiness and lower work satisfaction more often (Lu and Argyle 1994). Another literature revealed that a passive leisure lifestyle (such as smoking and high body mass index) has an effect on Leukocyte Telomere Length (LTL) and may accelerate the aging process. Unfortunately, a number of studies indicated that Chinese people would like to engage in passive leisure activities. Yu and Berryman (1996) found that leisure activities of Chinese students were mostly unorganized, passive, and solitary. The passive participation pattern in leisure of Chinese people is partially explained by the Confucianism culture (Schutte and Ciarlante 1998), under which, leisure was undervalued, leading to the predominantly passive leisure activities in Chinese leisure time (Li 2009). As a result, the increase in leisure time did not have a positive effect on China's labor efficiency.

Second, the amount of active leisure participation of the US and Japan could result to higher labor efficiency.

On the one hand, positive leisure activities do help to increase individual's productivity. Walsh(1982) found that active leisure participation prepares workers to be more productive. In fact, a true leisure-inclusive welfare index indicated the compensatory change in wage rates (labor efficiency) (Kokoski 1987). It is indicated that more educated people exercise more, which further enhance the human capital(Biddle and Hamermesh 1990; Mullahy and Robert 2010; Podor and Halliday 2012).

On the other hand, generally speaking, Americans and Japanese engaged more in active leisure activities. In the case of the US, Americans gradually increased participation in diverse leisure activities. In 1970s, the top-ranked leisure activities (from highest to lowest) were watching TV, playing with children, visiting with friends, entertainment outside the home, reading, hobbies and games, shopping, participating in sports, and attending sports events as a spectator (Arndt et al. 1980). In 2011, the top-ranked leisure activities (from highest to lowest by participation rate) were fitness walking, collecting, going to movies, going to the beach, outdoor activities in public parks, reading, social networking, travel, and watching TV (*Leisure Market Research Handbook* 2012). Overall, the most popular leisure activities in the US are steadily becoming more diverse. While this improvement is







modest, it indicates that Americans are moving in the right direction as they focus on getting in better physical shape to enhance productivity.

In Japan's case, the Japanese government began to increase leisure time and emphasize a more leisurely lifestyle in 1988. Leisure became the most important aspect of national life, exceeding housing and food (Harada 1994). Beginning in the 1980s, sports and recreation became significant parts of young Japanese people's lives, as Japanese people strongly encouraged their children to participate in group activities and outdoor sports to cultivate a spirit of discipline, cooperation, and voluntary service (Culkin 1989). As a result, Japan's labor efficiency was enhanced, accompanied by the increase in leisure time (Harada 1994).

Like Japan, most developed countries have experienced a positive relationship between leisure and efficiency (Barnett 2006). Since the1980s, most OECD countries have achieved very high GDP per capita with the increase of leisure time (Fogel 2000).

#### 6.2 Practical Implications

Apparently, active participation in leisure time improved the quality of human capital and further improved labor efficiency in the US and Japan. China, however, has not fully captured the positive effect of leisure on labor efficiency owing to relatively less leisure time and, more importantly, a negative participation pattern in leisure activities. The results of this study have several practical implications.

First, although China has witnessed a growth in leisure time, the results of the study suggested that the Chinese government must continually increase people's quality of leisure time to fully benefit from the positive effect of leisure time on labor efficiency. The total number of official days off in China has grown steadily, from 62 days in 1978 to 114 days in 1996 and 115 days in 2008 (Wei et al. 2010). This increase will unquestionably help to facilitate the positive effect of leisure time on labor efficiency.

Second, in line with the increase of leisure time, Chinese workers also need to change the way they participate in leisure activities. Researchers suggest that passive leisure activities, such as television viewing and internet surfing, are negatively correlated with people's well-being (Argyle 2001; Shaw and Gant 2002), while active leisure activities, such as exercise and travel, are positively associated with greater well-being (Hills and Argyle 1998). Therefore, people should be encouraged to participate in more active leisure pursuits in their free time. The government should also provide more space and facilities to encourage active sports and leisure activities in the short run. In the long run, support should be given to improving the quality of the infrastructure and the environment.

Third, a recent survey by the Chinese magazine *Qiushi* in 2012 showed that 82.8 % of the respondents felt they were overworked, which is consistent with the findings of Roberts(2013)'s study. Furthermore, 66.8 % felt their health conditions were poor, and 78.6 % reported that young friends, colleagues, or peers had died or experienced incurable illnesses in the last year. Stress, long working hours, and difficulty sleeping are the three biggest health concerns, suggesting that despite the steady increase in leisure time, overwork is still a common issue among Chinese people. Particularly for the younger generation, being the only child in the family results in additional pressure. Therefore, it is sensible for employers to encourage the younger generation to focus less on working overtime and more on improving work efficiency, which could be accomplished through better time allocation and active participation in physical/leisure activities.

#### 7 Conclusions and Limitations

Since the publication of Torstein Veblen's *Theory of the Leisure Class* in 1899, the field of leisure studies has been well developed by economists, sociologists, and psychologists. However, a paucity of cross-cultural comparative leisure research has led investigators to advocate the integration of anthropological research into leisure studies (Dong and Chick 2012). This study partly responds to this call by comparing three economies—the US, China, and Japan—from the perspective of leisure study.

These three largest economies in the world have large population sizes: the US has 310 million people, China has more than 1.3 billion people, and Japan has 130 million people. No previous study has attempted to look into the impact of leisure time using a comparative approach. This study used 31 years (1980–2011) of longitudinal data of the three countries, and generates interesting findings and makes contributions to the existing

literature. This study revealed that the US and Japan, as typical developed countries, enjoyed higher labor efficiency from longer leisure time and more active leisure participation. China, however, as a typical developing country, increased leisure time did not show such an effect, in large part because Chinese leisure participation is mostly more passive than American and Japanese leisure participation.

As a single study, this study is not free of limitation. Due to the accessibility limit, only 35 years of data were included. According to Phillips (2004), developing an econometric model that can help understanding an economic phenomena based on available observation is a fundamental challenge. The simplification from the economic model to the econometric model may blur the real nonlinear relationship between education time (u), leisure time (l) and the explained variable ( $\hat{y}$ , GDP per capita per hour). Fortunately, our simplification model passed through all statistic tests in this paper's sample pool. Future research may consider using a panel data regression to test the effect of leisure on efficiency as a whole. This may yield interesting findings. If data available, including one or two more developed countries repeat the analysis may reveal some interesting comparisons between developed countries and developing countries. A more specific look into type of leisure participation (positive or negative) may provide more explanation on why leisure time did not contribute to the labor efficiency in China as expected.

#### Appendix: Raw data

See Tables 4, 5, 6, 7, and 8.

| Year | China       | US       | Japan    |
|------|-------------|----------|----------|
| 1980 | 0.068457616 | 6.717903 | 4.388420 |
| 1981 | 0.069267435 | 7.497886 | 4.849182 |
| 1982 | 0.071517985 | 7.736079 | 4.481404 |
| 1983 | 0.079114748 | 8.241805 | 4.875398 |
| 1984 | 0.088105555 | 8.998576 | 5.117071 |
| 1985 | 0.103417423 | 9.579962 | 5.478130 |
| 1986 | 0.09906459  | 10.08057 | 8.050679 |
| 1987 | 0.089048004 | 10.58035 | 9.711644 |
| 1988 | 0.099619563 | 11.27009 | 11.75563 |
| 1989 | 0.10915854  | 11.91954 | 11.83853 |
| 1990 | 0.116528284 | 12.58216 | 12.37008 |
| 1991 | 0.12173591  | 12.89508 | 14.28467 |
| 1992 | 0.133428134 | 13.41272 | 15.78303 |
| 1993 | 0.136946428 | 13.84731 | 18.60960 |
| 1994 | 0.171249468 | 14.46802 | 20.45042 |
| 1995 | 0.247758804 | 14.94532 | 22.57010 |
| 1996 | 0.306821578 | 15.67976 | 19.77890 |
| 1997 | 0.336686142 | 16.40392 | 18.38869 |
| 1998 | 0.35552108  | 17.16525 | 16.81177 |
| 1999 | 0.376077464 | 18.04664 | 19.33636 |

 Table 4 GDP per capita per hour for China, US and Japan (1980–2011)

X. Wei et al.

| Year | China       | US       | Japan    |
|------|-------------|----------|----------|
| 2000 | 0.414552501 | 19.10780 | 20.47870 |
| 2001 | 0.444916156 | 19.79732 | 18.08536 |
| 2002 | 0.481763586 | 20.34223 | 17.37241 |
| 2003 | 0.538017331 | 21.23597 | 18.72759 |
| 2004 | 0.628189697 | 22.35977 | 20.39256 |
| 2005 | 0.694553599 | 23.63335 | 20.15844 |
| 2006 | 0.839028377 | 24.79036 | 19.11559 |
| 2007 | 1.11749636  | 25.77815 | 19.10078 |
| 2008 | 1.46784942  | 26.09350 | 21.44113 |
| 2009 | 1.60844237  | 25.57552 | 23.02997 |
| 2010 | 1.80884552  | 26.26632 | 24.84890 |
| 2011 | 2.27257605  | 27.10776 | 26.56405 |

#### Table 4 continued

 Table 5
 Leisure time (hours) per year/person for China, US and Japan (1980–2011)

| Year | China    | US       | Japan    |
|------|----------|----------|----------|
| 1980 | 4841.411 | 5271.881 | 5123.343 |
| 1981 | 4871.061 | 5283.671 | 5144.156 |
| 1982 | 4903.844 | 5250.981 | 5160.728 |
| 1983 | 4928.223 | 5240.920 | 5177.035 |
| 1984 | 4961.259 | 5216.334 | 5179.883 |
| 1985 | 4910.707 | 5226.915 | 5191.221 |
| 1986 | 4862.537 | 5217.882 | 5185.009 |
| 1987 | 4854.667 | 5191.566 | 5189.668 |
| 1988 | 4810.155 | 5168.212 | 5189.494 |
| 1989 | 4810.584 | 5142.799 | 5218.001 |
| 1990 | 4933.734 | 5146.205 | 5255.015 |
| 1991 | 4927.662 | 5156.999 | 5282.317 |
| 1992 | 4916.194 | 5132.230 | 5311.167 |
| 1993 | 4906.760 | 5088.516 | 5338.417 |
| 1994 | 4897.208 | 5081.193 | 5317.714 |
| 1995 | 5176.244 | 5075.316 | 5317.039 |
| 1996 | 5300.934 | 5098.521 | 5314.428 |
| 1997 | 5279.068 | 5096.007 | 5338.258 |
| 1998 | 5311.338 | 5097.746 | 5355.266 |
| 1999 | 5317.442 | 5112.683 | 5384.069 |
| 2000 | 5322.965 | 5160.192 | 5369.267 |
| 2001 | 5183.928 | 5165.341 | 5378.104 |
| 2002 | 5145.669 | 5162.923 | 5383.155 |
| 2003 | 5107.071 | 5152.662 | 5381.696 |
| 2004 | 5182.826 | 5152.089 | 5389.111 |
| 2005 | 5051.346 | 5140.857 | 5391.387 |
| 2006 | 4968.084 | 5138.021 | 5376.223 |

### Author's personal copy

#### How Does Leisure Time Affect Production Efficiency? Evidence...

| Year | China    | US       | Japan    |
|------|----------|----------|----------|
| 2007 | 5037.214 | 5127.639 | 5375.933 |
| 2008 | 5064.375 | 5119.425 | 5391.115 |
| 2009 | 5041.500 | 5132.793 | 5447.824 |
| 2010 | 4907.912 | 5105.378 | 5420.248 |
| 2011 | 5003.702 | 5124.597 | 5431.664 |
|      |          |          |          |

#### Table 5 continued

| <b>Table 6</b> Education time per<br>year/person for China, US and | Year | China    | US       | Japan    |
|--------------------------------------------------------------------|------|----------|----------|----------|
| Japan (1980–2011)                                                  | 1980 | 1099.004 | 1675.119 | 1515.657 |
|                                                                    | 1981 | 1069.355 | 1672.329 | 1509.844 |
|                                                                    | 1982 | 1039.456 | 1708.019 | 1495.272 |
|                                                                    | 1983 | 1009.901 | 1699.080 | 1487.965 |
|                                                                    | 1984 | 980.6569 | 1705.666 | 1472.117 |
|                                                                    | 1985 | 1027.964 | 1697.085 | 1475.779 |
|                                                                    | 1986 | 1079.250 | 1714.118 | 1477.991 |
|                                                                    | 1987 | 1104.452 | 1735.434 | 1474.332 |
|                                                                    | 1988 | 1129.436 | 1754.788 | 1478.506 |
|                                                                    | 1989 | 1132.504 | 1768.201 | 1471.999 |
|                                                                    | 1990 | 1127.946 | 1782.795 | 1473.985 |
|                                                                    | 1991 | 1123.613 | 1785.001 | 1479.683 |
|                                                                    | 1992 | 1124.676 | 1807.770 | 1483.833 |
|                                                                    | 1993 | 1123.705 | 1842.484 | 1516.583 |
|                                                                    | 1994 | 1122.852 | 1841.807 | 1544.286 |
|                                                                    | 1995 | 1144.980 | 1840.684 | 1558.961 |
|                                                                    | 1996 | 1167.439 | 1826.479 | 1553.572 |
|                                                                    | 1997 | 1180.667 | 1817.993 | 1556.742 |
|                                                                    | 1998 | 1139.761 | 1816.254 | 1562.734 |
|                                                                    | 1999 | 1143.217 | 1800.317 | 1565.931 |
|                                                                    | 2000 | 1147.390 | 1763.808 | 1569.733 |
|                                                                    | 2001 | 1234.872 | 1780.659 | 1572.896 |
|                                                                    | 2002 | 1257.474 | 1787.077 | 1578.845 |
|                                                                    | 2003 | 1285.643 | 1807.338 | 1579.304 |
|                                                                    | 2004 | 1204.674 | 1805.911 | 1583.889 |
|                                                                    | 2005 | 1216.226 | 1820.143 | 1593.613 |
|                                                                    | 2006 | 1325.559 | 1821.979 | 1599.777 |
|                                                                    | 2007 | 1350.286 | 1834.361 | 1599.067 |
|                                                                    | 2008 | 1370.053 | 1848.575 | 1597.885 |
|                                                                    | 2009 | 1387.715 | 1860.207 | 1598.176 |
|                                                                    | 2010 | 1401.373 | 1876.622 | 1606.752 |
|                                                                    | 2011 | 1367.112 | 1848.403 | 1600.336 |

# Author's personal copy

X. Wei et al.

| <b>Table 7</b> Fixed capital formationper capita for China, US and | Year | China    | US       | Japan    |
|--------------------------------------------------------------------|------|----------|----------|----------|
| Japan                                                              | 1980 | 56.15372 | 2487.402 | 2936.868 |
|                                                                    | 1981 | 53.47382 | 2725.458 | 3120.920 |
|                                                                    | 1982 | 56.88315 | 2653.843 | 2768.673 |
|                                                                    | 1983 | 64.52280 | 2809.335 | 2834.174 |
|                                                                    | 1984 | 73.95517 | 3254.956 | 2950.022 |
|                                                                    | 1985 | 86.47088 | 3463.711 | 3158.988 |
|                                                                    | 1986 | 85.30807 | 3573.853 | 4644.190 |
|                                                                    | 1987 | 78.57001 | 3650.599 | 5774.421 |
|                                                                    | 1988 | 87.82160 | 3827.419 | 7369.512 |
|                                                                    | 1989 | 79.97277 | 4007.390 | 7626.860 |
|                                                                    | 1990 | 81.31692 | 4019.662 | 8029.710 |
|                                                                    | 1991 | 91.89798 | 3820.840 | 9013.924 |
|                                                                    | 1992 | 114.7266 | 3962.747 | 9418.687 |
|                                                                    | 1993 | 140.7990 | 4240.937 | 10350.95 |
|                                                                    | 1994 | 168.5415 | 4590.196 | 10958.11 |
|                                                                    | 1995 | 207.5758 | 4886.998 | 11800.24 |
|                                                                    | 1996 | 237.5601 | 5235.454 | 10531.33 |
|                                                                    | 1997 | 254.6318 | 5623.916 | 9454.044 |
|                                                                    | 1998 | 277.8517 | 6065.165 | 7994.053 |
|                                                                    | 1999 | 294.3662 | 6554.616 | 8919.809 |
|                                                                    | 2000 | 323.7868 | 7025.032 | 9399.754 |
|                                                                    | 2001 | 358.6380 | 6950.231 | 7949.378 |
|                                                                    | 2002 | 411.7084 | 6715.684 | 7147.120 |
|                                                                    | 2003 | 501.5944 | 6953.964 | 7579.210 |
|                                                                    | 2004 | 607.0248 | 7575.683 | 8087.112 |
|                                                                    | 2005 | 694.8647 | 8299.026 | 7993.668 |
|                                                                    | 2006 | 841.4014 | 8789.801 | 7732.993 |
|                                                                    | 2007 | 1036.810 | 8787.602 | 7695.395 |
|                                                                    | 2008 | 1392.243 | 8334.266 | 8520.276 |
|                                                                    | 2009 | 1723.020 | 6894.708 | 8209.927 |
|                                                                    | 2010 | 2013.156 | 6881.856 | 8650.326 |
|                                                                    | 2011 | 2412.548 | 7733.320 | 8150.676 |

| Table 8 | Annotations | for | equations |
|---------|-------------|-----|-----------|
|---------|-------------|-----|-----------|

| Letters                                          | Annotations                                                                                                                                                                                                                                            |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equation (1) $Y = \bar{A}K^{\beta}H^{1-\beta}$   | Y denotes aggregate production, $\overline{A}$ represents an<br>exogenous technical level, K is aggregate<br>capital, $\beta$ represents the elasticity of K to Y, and<br>H denotes human capital. L denotes the<br>averaged leisure time of a country |
| Equation (2) $\bar{A} = AK^{\alpha}l^{1-\alpha}$ | A denotes an exogenous technology level, a is the elasticity of K to $\bar{A}$ , and $(1 - a)$ is the elasticity of l to $\bar{A}$                                                                                                                     |

### Author's personal copy

#### How Does Leisure Time Affect Production Efficiency? Evidence...

| Table 8 continued                                                                               |                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Letters                                                                                         | Annotations                                                                                                                                                                                                                                                                                                |
| Equation (3) $H = uL$                                                                           | u denotes education time and L denotes aggregate labor force                                                                                                                                                                                                                                               |
| Equation (4)<br>$\ln \hat{y} = c + (\alpha + \beta) \ln k + (1 - \beta) \ln u - \ln(1 - u - l)$ | $\hat{y}$ denotes GDP per capita per (working) hours, the<br>measure of labor efficiency; k denotes physical<br>capital per capita, u denotes education time per<br>capital, which is the Proxy Variable of human<br>capital, and c is the constant term including<br>technical level and population level |
| Equation (5) $\hat{y} = c + \alpha_1 k + \alpha_2 u + \alpha_3 l + \varepsilon$                 | c is intercepted, denotes the estimated coefficients, and $\epsilon$ is the stochastic error based on the assumption of a white noise process                                                                                                                                                              |

#### References

- Aghion, P., & Howitt, P. (1992). A model of growth through creative destruction. *Econometrica*, 60(2), 323–351.
- Aguiar, M., & Hurst, E. (2007). Measuring trends in leisure: The allocation of time over five decades. *Quarterly Journal of Economics*, 122(3), 969–1006.
- Argyle, M. (2001). The psychology of happiness (2nd ed.). East Sussex: Routledge.

Arndt, J. J., Gronmo, S. S., & Hawes, D. K. (1980). Allocation of time to leisure activities—Norwegian and American patterns. *Journal of Cross-Cultural Psychology*, 11(4), 498–511.

Baldwin, K., & Tinsley, H. (1988). An investigation of the validity of Tinsley and Tinsley's (1986) theory of leisure experience. *Journal of Counseling Psychology*, 35, 263–267.

Barnett, L. A. (2006). Accounting for leisure preferences from within: The relative contribution of gender, race or ethnicity, personality, affective style and motivational orientation. *Journal of Leisure Research*, 38(4), 445–474.

Barro, R. J. (1991). Economic growth in a cross section of countries. *Quarterly Journal of Economics*, 106(2), 407–433.

- Beatty, J. E., & Torbert, W. R. (2003). The false duality of work and leisure. Journal of Management Inquiry., 12(3), 239–255.
- Becker, G. S. (1965). A theory of the allocation of time. The Economic Journal, 75(299), 493-517.

Biddle, J., & Hamermesh, D. (1990). Sleep and the allocation of time. *Journal of Political Economy*, 98(5), 922–943.

Bierens, H. J. (1997a). Cointegration analysis. In C. Heij, J. M. Schumacher, B. Hanzon, & C. Praagman (Eds.), System dynamics in economic and financial models (pp. 217–246). New York: Wiley.

Bierens, H. J. (1997b). Nonparametric cointegration analysis. Journal of Econometrics, 77, 379-404.

- Borodulin, K., Laatikainen, T., Lahti-Koski, M., Jousilahti, P., & Lakka, T. A. (2008). Association of age and education with different types of leisure-time physical activity among 4437 finnish adults. *Journal* of Physical Activity & Health, 5(2), 242–251.
- Bourdieu, P. (1986). The forms of capital. In: J. G. Richardson (Ed.), *Handbook of theory and research for the sociology of education*. New York: Grenword Press.

Buchanan, J. (1994). The return to increasing returns. In J. Buchanan & Y. Yoon (Eds.), *The return to increasing returns*. Ann Arbor: The University of Michigan Press.

- Chase, E. S. (1967). Leisure and Consumption. In K. Shell (Ed.), *Essays on the theory of optimal economic growth*. Cambridge: MIT Press.
- Chen, M., & Chevalier, J. A. (2008). The taste for leisure, career choice, and the returns to education. *Economics Letters*, 99(2), 353–356. doi:10.1016/j.econlet.2007.08.005.
- Cracolici, M. F., Cuffaro, M., & Nijkamp, P. (2010). The measurement of economic, social and environmental performance of countries: A novel approach. *Social Indicators Research*, 95(2), 339–356.

Csikszentmihalyi, M. (1981). Leisure and socialization. Social Forces, 60, 332-340.

Csikszentmihalyi, M. (1997). *Finding flow: The psychology of engagement with everyday life*. New York: Basic Books.

Culkin, D. F. (1989). A look at Japanese work and leisure. Parks & Recreation, 24(4), 33-37.

- Defrance, J., & Pociello, C. (1993). Structure and evolution of the field of sports in France (1960–1990). International Review for the Sociology of Sport, 28, 1–23.
- Dong, E., & Chick, G. (2012). Leisure constraints in six Chinese cities. Leisure Sciences, 34(5), 417-435.
- Downey, R. G., & King, C. V. (1998). Missing data in Likert ratings: A comparison of replacement methods. *The Journal of General Psychology*, 125, 175–191.
- Drive, B. L., Brown, P. J., & Peterson, G. L. (1991). *Benefits of leisure*. State College, PA: Venture Publishing.
- Duernecker, G. (2008). To begrudge or not to begrudge: Consumption and leisure externalities revisited. Applied Economics Letters, 15(4), 245–252. doi:10.1080/13504850600592481.
- Durbin, J., & Watson, G. S. (1971). Testing for serial correlation in least squares regression. III. *Biometrika*, 58(1), 1–19.
- Eichenbaum, S. M, Hansen, L. P., & Richard, S. F. (1985). The dynamic equilibrium pricing of durable consumption goods. Manuscript, Carnegie-Mellon University.
- Fair, R. C. (1970). The estimation of simultaneous equation models with lagged endogenous variables and first order. *Econometrica*, 38(3), 507–532.
- Fogel, R. W. (2000). The fourth great awaken and the future of egalitarianism. Chicago: University of Chicago Press.
- Foong, A. (1992). Physical exercise/sports and biopsychosocial well-being. Journal of the Royal Society of Health, 112, 227–230.
- Fujita, M. (1989). Urban economic theory: Land use and city size. Cambridge: Cambridge University Press.
- Gali, J. (1999). Technology, employment and the business cycle: Do technology Shocks explain aggregate fluctuation? American Economic Review, 89(1), 249–271.
- Galit, N. (2007). Retirees' leisure: Activities, benefits, and their contribution to life satisfaction. Leisure Studies, 26(1), 65–80.
- Georg, D. (2008). To begrudge or not to begrudge: Consumption and leisure externalities revisited. Applied Economics Letters, 15(4), 245–252.
- Gómez, M. A. (2009). Equilibrium efficiency in the Ramsey model with utility and production externalities. Journal of Economic Studies, 36(4), 355–370.
- Gronau, R. (1977). Leiaure, home production and work—The theory of the allocation of time revisited. Journal of Political Economy, 85(6), 1099–1123.
- Harada, M. M. (1994). Towards a renaissance of leisure in Japan. Leisure Studies, 4, 277-287.
- Harris, D. (2012). Work and leisure in higher education. British Journal of Sociology of Education, 33(1), 115–132. doi:10.1080/01425692.2012.632869.
- Hendee, J. C. (1971). The pacific sociological review. Sociology and Applied Leisure Research, 14(3), 360–368.
- Hills, P., & Argyle, M. (1998). Positive moods derived from leisure and their relationship to happiness and personality. *Personality and Individual Differences*, 25, 523–535.
- Ioannides, Y. M., & Taub, B. (1992). On dynamics with time-to-build investment technology and non-timeseparable leisure. *Journal of Economic Dynamics and Control*, 16, 225–241.
- Jackson, E. L. & Walker, G. J. (2006). A cross-cultural comparison of leisure styles and constraints experienced by Chinese and Canadian University Students. In 9th world leisure congress abstracts: Oral and poster presentations (p. 28). Hangzhou, China: World Leisure.
- Jones, C. I. (1995). R & D based models of economic growth. *Journal of Political Economy*, 103, 759–784. Kačerauskas, T. (2012). Creative economy and technologies: Social, legal and communicative issues.
- *Journal of Business Economics & Management*, *13*(1), 71–80. doi:10.3846/16111699.2011.620151. Kenc, T. (2004). Taxation, risk-taking and growth: A continuous-time stochastic general equilibrium ana-
- lysis with labor-leisure choice. Journal of Economic Dynamics and Control, 28, 1511–1539.
- Kokoski, M. F. (1987). Indices of household welfare and the value of leisure time. *The Review of Economics and Statistics*, 69(1), 83–89.
- Kydland, F. E. (1995). Business cycle and aggregate labor market fluctuation. In T. F. Cooley (Ed.), Frontier of business cycle research. Princeton: Princeton University Press.
- Kydland, F. E., & Prescott, E. C. (1982). Time to build and aggregate fluctuations. *Econometrica*, L, 1345–1370.
- Ladrón-de-Guevara, A., Ortigueira, S., & Santos, M. S. (1999). A two-sector model of endogenous growth with leisure. *Review of Economic Studies*, 66, 609–631.
- Lee, C. (2001). Changes in employment and hours, and family income inequality: 1969–1989. International Economic Journal, 15(2), 27–49.
- Li, M. Z. (2009). Leisure and tourism in the changing China. World Leisure Journal, 51(4), 229–236. doi:10. 1080/04419057.2009.9674602.

- Lloyd, K. M., & Auld, K. J. (2002). The role of leisure in determining quality of life: Issues of content and measurement. Social Indicators Research, 57, 43–71.
- Lu, L., & Argyle, M. (1994). Leisure satisfaction and happiness as a function of leisure activity. The Kaohsiung Journal of Medical Sciences, 10(2), 89–96.
- Lu, L., & Hu, C. H. (2005). Personality, leisure experience and happiness. Journal of Happiness Studies, 6, 325–342.
- Lucas, R. E. (1988). On the mechanism of economic development. *Journal of Monetary Economics*, 22, 3–42.
- Lucas, R. E., & Rapping, L. A. (1969). Real wages, employment and inflation. Journal of Political Economics, LXXVII, 721–754.
- Lyng, S. (1990). Edgework: A social psychological analysis of voluntary risk-taking. American Journal of Sociology, 95(4), 851–886.
- Maguire, J. S. (2008). Leisure and obligation of self-work: An examination of the fitness field. *Leisure Studies*, 27(1), 59–75.
- Mankiw, N. G., Romer, D., & Weil, D. N. (1992). A contribution to the empirics of economic growth. *Quarterly Journal of Economics*, 107(2), 407–437.
- Mankiw, N. G., Rotenberg, J., & Summers, L. H. (1985). Intertemporal institution in macroeconomics. *Quarterly Journal of Economics*, 200(C), 225–252.
- Meinen, G., Verbiest, P., & Wolf, P. (1998). Perpetual inventory method: Service lives, discard patterns and depreciation methods. Retrieved from http://www.oecd.org/std/na/2552337.pdf
- Ministry of Human Resources and Social Security of China. (2014). *China labor statistical yearbooks*. Retrieved from http://www.mohrss.gov.cn/SYrlzyhshbzb/zwgk/szrs/
- Monte, R. N. (2008). Leisure participation and satisfaction for healthy lifestyles. *Asia Life Science, Suppl.* 2, 29–39.
- Mullahy, J., & Robert, S. A. (2010). No time to lose: Time constraints and physical activity in the production of health. *Review of Economics of the Household*, 8(4), 409–432. doi:10.1007/s11150-010-9091-4.
- National Bureau of Statistics of China. (2014). China statistical yearbooks. Retrieved from http://www.stats. gov.cn/english/Statisticaldata/AnnualData/
- Neanidis, K. C. (2012). Humanitarian aid. Fertility and Economic Growth, Economica, 79(313), 27–61. doi:10.1016/j.jclepro.2011.12.006.
- Newey, W., & West, K. (1987). A simple positive semi-definite. *Heteroskedasticity and Autocorrelation Consistent Covariance Matrix, Econometrica*, 51, 25–43.
- Nordhaus, W., & Tobin, J., (1972). Is growth obsolete? Economic growth. New York: National Bureau of Economic Research.
- O'Boyle, E. J. (2011). Meeting human need through consumption, work, and leisure. *International Journal* of Social Economics, 38(3), 260–272. doi:10.1108/03068291111105192.
- OECD. (2014). Average annual hours actually worked. Retrieved from http://stats.oecd.org/BrandedView. aspx?oecd\_bv\_id=lfs-data-en&doi=data-00303-en
- Ortigueira, S. (2000). A dynamic analysis of an endogenous growth. Economic Theory, 16, 43-62.
- Palmer, A. D. (2008). Workplace flexibility leads to healthier employees. Incentives Pub., February 8.
- Phillips, P. C. (2004). Laws and limits of econometrics. The Economic Journal, 113(March), C26–C52.
- Pichot, L., & Pierre, J. (2009). Management practices in companies through Sport. Management Decision, 47(1), 137–150.
- Piergiovanni, R., Carree, M., & Santarelli, E. (2009). Creative industries, new business formation and regional economic growth. *Jena Economic Research Papers*, No. 2009-020. Retrieved from https:// www.econstor.eu/dspace/bitstream/10419/31782/1/597775176.pdf.
- Pintea, M. I. (2010). Leisure externalities: Implications for growth and Welfare. Journal of Macroeconomics, 32, 1025–1040.
- Podor, M., & Halliday, T. J. (2012). Health status and the allocation of time. *Health Economics*, 21(5), 514–527. doi:10.1002/hec.1527.
- Putnam, R. D. (1995). Bowling alone: America's declining social capital. Journal of Democracy, 6(1), 64–78.
- Ragheb, M. G. (1993). Leisure and perceived wellness: A field investigation. *Leisure Sciences*, 15(1), 13-24.
- Ramsay, A. V., & Francis, N. (2009). A century of work and leisure. American Economic Journal: Macroeconomics, 1(2), 189–224.
- Ramsey, J. B. (1969). Tests for specification errors in classical linear least squares regression analysis. *Journal of Royal Statistics Society*, B31(2), 350–371.
- Rau, R., & Triemer, A. (2004). Overtime in relation to blood pressure and mood during work, leisure and night time. Social Indicators Research, 67(1/2), 51–73.

- Roberts, D. (2013). Long work hours and trouble sleeping are hurting China's workers. Bloomberg Business Week, Retrieved from http://www.Businessweek.com/articles/2013-04-05/long-work-hours-andtrouble-are-sleeping-hurting-chinas-workers
- Robinson, J., & Godbey, G. (1997). *Time for life: The surprising ways Americans use their time*. University Park: Pennsylvania State University Press.
- Romer, P. M. (1986). Increasing returns and long run growth. Journal of Political Economy, 94(5), 1002–1037.
- Rubinstein, M. (1974). An aggregation theorem for securities market. Journal of Financial Economies, I, 225–244.
- Ruiz-Contreras, A. E., Soria-Rodríguez, G., Almeida-Rosas, G. A., García-Vaca, P. A., Delgado-Herrera, M., Méndez-Díaz, M., & Prospéro-García, O. (2012). Low diversity and low frequency of participation in leisure activities compromise working memory efficiency in young adults. *Acta Psychologica*, 139(1), 91–96. doi:10.1016/j.actpsy.2011.10.011.
- Ryder, H. E., Stafford, F. P., & Stephan, P. E. (1976). Labor, leisure and training over the life cycle. International Economic Review, 17, 651–674.
- Sankey, D. (2008). Flexibility a boon to employees: Canadian firms make big gains on diversity front. Calgary Herald, April 5, H1/FRONT.
- Schultz, T. W. (1961). Investment in human capital. The American Economic Review, 51(1), 1–17.
- Schutte, H., & Ciarlante, D. (1998). Consumer behaviour in Asia. Great Britain: Macmillan.
- Sevilla, S. A., Gimenez, J. I., Gersuny, J. I. (2012). Leisure inequality in the US: 1985–2003. Demography, 493(3), 939–964. doi:10.1007/s13524-012-0100-5.
- Shaw, L. H., & Gant, L. M. (2002). Users divided? Exploring the gender gap in internet use. CyberPsychology & Behavior, 5(6), 517–527.
- Shilling, C. (2004). Physical capital and situated action: A new direction for corporeal sociology. British Journal of Sociology of Education, 25(4), 473–487.
- Solow, R. M. (1957). Technical change and the aggregate production function. *Review of Economics and Statistic*, 39, 312–320.
- Stebbins, R. (2000). The extraprofessional life: Leisure. Retirement and unemployment. *Current Sociology*, 48(1), 1–18.
- Suri, T., Boozer, M. A., Ranis, G., & Stewart, F. (2011). Paths to success: The relationship between human development and economic growth. World Development, 39(4), 506–522.
- The World Bank. (2012). World bank open data by countries. Retrieved from http://data.worldbank.org/ country
- The World Bank. (2014a). Countries and economies. Retrieved from http://data.worldbank.org/country

The World Bank. (2014b). Indicators. Retrieved from http://data.worldbank.org/indicator

- The World Bank. (2014c). Life expectancy at birth, total (years). Retrieved from http://data.worldbank.org/ indicator/SP.DYN.LE00.IN/countries
- The World Bank. (2014d). World development indicators. Retrieved from http://data.worldbank.org/datacatalog/world-development-indicators
- UNESCO. (2014). Data centre/education. Retrieved from http://stats.uis.unesco.org/unesco/ReportFolders/ ReportFolders.aspx
- Varvarigos, D. (2011). Non-monotonic welfare dynamics in a growing economy. Journal of Macroeconomics, 33(2), 303–312.
- Walker, G. J. (2009). Culture, self-construal, and leisure motivations. *Leisure Sciences*, 31(4), 347–363. doi:10.1080/01490400902988291.
- Walsh, E. R. (1982). Work, leisure and the pursuit of happiness. *Leisure Information Newsletter Summer*, 9(1), 10–11.
- Weder, M. (2004). A note on conspicuous leisure, animal spirits and endogenous cycles. Portuguese Economic Journal, 3(1), 1–13.
- Wei, X., Qu, H., & Ma, E. (2010). A study of the effects of leisure time on China's economic growth: A neoclassic growth model. *Tourism Analysis*, 15, 663–672.
- Yin, X. (2005). New trends of leisure consumption in China. Journal of Family and Economic Issues, 26, 175–182.
- Yu, P., & Berryman, D. L. (1996). The relationship among self-esteem, acculturation, and recreation participation of recently Arrived Chinese immigrant adolescents. *Journal of Leisure Research*, 28, 251–273.
- Zhang, L., & Thomas, S. (2003). Beyond the money: The effects of college major, institutional prestige, and academic performance on job satisfaction. In Paper presented at 2002 Annual Meeting of the Association for the Study of Higher Education. Sacramento, CA, November 2003.